Resources

Publications, application notes and more

  • Application note

    Protein Size as an Indication of Structure

    Molecular weight (Mw) is a commonly used, and for many scientists a readily understood, parameter to describe the size of a protein or complex. Here we show how hydrodynamic radius (Rh) can be used in combination with Mw to provide insights into the shape and structure of proteins and illustrate how Mw alone may not always provide a complete picture.

  • Application note

    Oligomerization of Interleukin-2

    A commercially available human interleukin-2 is assessed by microfluidic diffusional sizing on the Fluidity One across a dilution series. The hydrodynamic radius is observed to increase with increasing concentration, in a way which suggests a monomer-trimer equilibrium with positive cooperativity is established.

  • Application note

    Interleukin-2 stability in changing buffer and temperature conditions

    The stability of interleukin-2 in different buffers and storage temperatures is evaluated using the Fluidity One. We find that IL-2 forms aggregates within 24 hours in some buffers, and that the Fluidity One provides a simple means to evaluate the stability of proteins across different conditions.

  • Blog

    How does Microfluidic Diffusional Sizing (MDS) compare to Dynamic Light Scattering (DLS) for protein size tests?

    Measuring the size of proteins provides insights into folding and conformations, aggregation and oligomerization. We compare and contrast the benefits and limitations of two popular techniques - DLS Dynamic Light Scattering, and MDS Microfluidic Diffusional Sizing.

  • Application note

    A comparison of Microfluidic Diffusional Sizing with Dynamic Light Scattering and Taylor Dispersion Analysis

    The established technologies of Dynamic Light Scattering (DLS) and Taylor Dispersion Analysis (TDA) are compared to Microfluidic Diffusional Sizing (MDS) for sizing proteins of varying molecular weights and at varying concentrations. We show that MDS offers comparable sizing of proteins over a range of sizes, and can provide consistent sizing to lower concentrations than the other techniques.

  • Blog

    Protein size - how do I measure it, and why is it important?

    An overview of why protein size matters, and what structural and functional information protein size can reveal. To understand proteins and their function, we have to understand the way they fold, aggregate and interact. Conformation is key to protein function and can be revealed by measuring size. Different methods for measuring protein size are summarised, and comparison is made, considering the method, range, cost and limitations of each technology.

  • Application note

    Detecting insulin oligomerization using microfluidic diffusional sizing

    Insulin monomers self-assemble into hexamers, which is known to affect its level of uptake in the human body. Here we show that Microfluidic Diffusional Sizing (MDS) can be used to detect these changes.