## The K<sub>D</sub> cheat sheet



Interactions between two species (e.g. Ligand A and Protein receptor B) can be characterized by their  $K_D$  - this value indicates how strong the interaction is.



## Terms

| Term             | Units                                | Definition                                                                                                                               |
|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| K <sub>D</sub>   | Mols (M) (and pM, µM etc)            | Dissociation constant; the concentration at which half of the receptors present are bound to a binding partner.                          |
| k <sub>on</sub>  | Mols per second (M s <sup>-1</sup> ) | The second order rate constant of binding reaction.<br>The rate at which binding occurs.<br>This is concentration dependent.             |
| k <sub>off</sub> | Per second (s <sup>-1</sup> )        | The first order rate constant for dissociation of the complex. The rate at which dissociation occurs. This is concentration indepdenent. |

## Key points to remember

- When  $K_{D}$  is low, binding is strong
- When  $K_{D}$  is high, binding is weak
- Lower case k = rate
- Upper case K = constant
- Don't forget **time** as k<sub>on</sub> is concentration dependent, the time for equilibrium to be reached varies with concentration.

## **Experimental Determination**

- Keep the concentration of one species constant (A in the diagram below)
  - o This should be the one which gives a signal in your detection method
  - o This should preferably be the smaller species if measuring via size change
  - o To avoid long reaction times ensure that [A] is close to  $K_{D}$
- Change the concentration of the other species (B in the diagram below) logarithmic dilution is best to cover the full range.
- Plan each test in advance;
  - 1. Measure A on its own
  - Measure the same concentration of A with a large excess of B, so that 90% or more of A is in bound form (you can tell that 90% is bound by measuring another similar concentration of

B, and seeing that it gives a similar result)

- 3. Measure the same concentration of A with a concentration of B you suspect will be at the  $K_{D}$
- 4. Measure 3 samples with [B] below the  $K_{D}$
- 5. Measure 3 samples with [B] above the  $K_{D}$



Measure the K<sub>D</sub> of protein interactions with fluidity One-W Learn more at www.fluidic.com/onew